Short-Term Exposure of Cancer Cells to Ultra-High Concentrations of Nitric Oxide (UNO) Activates the mPD-1/mPD-L1 Axis and Immune Response

Yana Epshtein1, Matan Goldshtein1, Selena Chaisson1, Jedidia M. Monson1, Matt Johnson1, Gavin Choy1, Amir Avniel2, Steve Lisi2, Hila Confino1
1Beyond Cancer, 2Beyond Air

Background
We have previously shown that treating mouse colon carcinoma (CT26) tumor-bearing mice with ultra-high concentrations of nitric oxide (UNO) upregulates innate and adaptive immune cells both locally and systemically. Furthermore, we demonstrated that co-treatment of mice with mPD-1 antibody and UNO results in long term tumor regression and survival (Figure 1). In the current study, we assessed mPD-L1 and immune response following short-term exposure to UNO.

Results

In vitro A Apoptosis and cell death in vitro

B mPD-L1 expression in PI-negative CT26 tumor cells

In vivo A Viability in CT26 tumors

B M1 macrophages

C Tregs

Conclusions
Short exposure of CT26 cells to UNO results in the upregulation of mPD-L1, suggesting that local treatment with UNO in solid tumors may sensitize “cold” tumor cells within the tumor mass to become responsive to immune checkpoint blockade. In addition, UNO prompts a more favorable local and systemic immune environment that may further enhance anti-tumor response.

Figure 1: Increase in survivability of CT26 tumor-bearing mice following 10-min 50,000 ppm NO and anti-mPD-1. Comparison Hazard Ratio, 50,000 ppm NO 10 min + Anti-mPD1 vs Anti-mPD1. HR = 0.41, p-value = 0.0653,[95% CI] = [0.16, 1.06] (Cox proportional hazard model)

Figure 2: Schematic representation of in vitro and in vivo experimental settings. (A) Exposure of CT26 cells to UNO and Flow Cytometry analysis of viability using Annexin V/PI and PD-L1 expression. (B) Tumor treatment with UNO followed by FACS analysis.

Figure 3: Cell death mechanism and mPD-L1 expression after exposure to UNO. (A) Apoptotic cell mechanism analysis using Annexin V/PI intracellular staining and (B) mPD-L1 expression on PI-negative cells. Two-way ANOVA, multiple comparison test, ***P<0.001, ****P<0.0001.

Figure 4: Cell viability and immune profiling of CT26 mice treated with NO 50,000 ppm for 5 minutes. (A) Viability of tumor cells in CT26 tumors treated with 50,000 ppm NO at 1- and 5-days post treatment, (B) Levels of blood M1 macrophages at day 1 after treatment, (C) Tregs in CT26 tumors 1 day after treatment. A,B were analyzed by One-way ANOVA, multiple comparison test, and C was analyzed by Two-way ANOVA *P<0.001, **P<0.0001.