Background

Immunomodulating agents are an accepted backbone of cancer treatment. However, they are effective only in a select group of cancers and resistance often emerges to many treatments that target single molecular mutations or cancer pathways. At elevated concentrations, the signaling molecule nitric oxide (NO) acts as an anti-tumor agent and has been reported to sensitize resistant tumor cells to anti-cancer therapies. Preclinical studies of Ultra-High Concentration Nitric Oxide (UNO) in solid tumor models such as colon carcinoma (CT26) and aggressive breast cancer (4T1) have demonstrated its ability to cause both local cell death as well as a systemic immune response. In addition, creating a memory immune response allows for the recognition and attack of subsequent primary tumors as well as distant metastases. Moreover, preclinical data of UNO in combination with immune checkpoint inhibitors has demonstrated synergistic effects resulting in significant tumor response and survival advantages. Here, we present the initial proof-of-human Phase 1 safety and preliminary efficacy of UNO.

Conclusions

Beyond Cancer would like to acknowledge the patients and families who participated in Study BA-ONC-01 (NCT05351502) as well as the contributions of the site investigators and study staff.

Andrei Markovits1, David Greenberg2, Amir Avniel3, Frederik Dirbas4, Jedidiah M. Monson5

1Soroka University Medical Center, Beer Sheva, Israel, 2Beyond Act, Rahovot, Israel, 3Department of General Surgery, Stanford CA, USA, 4Beyond Cancer, Inc., Atlanta, GA, USA

SFC 38th Annual Meeting, November 3 – 5, San Diego, CA USA

Study Overview

BA-ONC-01 is a Phase 1 trial consisting of Dose Escalation and Dose Expansion Segments (NCT05351502). Three single escalating doses of UNO 25,000, 50,000, and 100,000 ppm will be delivered intratumorally over 5 minutes in subjects with relapsed or refractory unresectable primary or metastatic cutaneous and subcutaneous solid tumors.

Study Schematic:

Major Eligibility

• 18 years of age or older with ECOG Performance Status of 0–3.
• Confirmative diagnosis of at least 1 palpable unresectable cutaneous or subcutaneous histologically confirmed primary or metastatic solid tumor.
• Superficial tumor axis of 4.5 mm minimum/50 mm maximum length.
• No therapy of proven efficacy exists, not amenable to standard therapies, has failed to respond to standard therapy or has progressed despite standard therapy.
• Adequate bone marrow, liver and renal function.
• Tumor is not situated in the lymph node, not situated in the thyroid, close to the trachea or in a facial or other region which, in the investigator’s opinion, can pose extra risk.
• Tumor vascularity, as determined by central radiologist, does not pose risks to the subject.

Table 1: Baseline Demographics

Table 2: Treatment Emergent Adverse Events

Figures B–G: Clinical Immune Biomarkers Post UNO Treatment and Corresponding Murine Immune Biomarkers

Objectives

Primary Objective: Determine safety profile, MTD and the RP2D.

Secondary Objective: Perform a preliminary assessment of the anti-tumor activity of a single intratumoral UNO injection at all administered doses, per RECIST version 1.1.

Exploratory Objective: Assess biomarkers that may predict anti-tumor activity of a single intratumoral UNO injection.

Results

Table 1: Baseline Characteristics

Table 2: Treatment Emergent Adverse Events

Figure A: Case Report Early Response (Subject #3)

• 82 y/o morose with history of squamous cell carcinoma 2017 metastases to neck and back.
• Received 2 prior surgeries, 2 prior lines of immunotherapy, 2 prior lines of chemotherapy/targeted therapy, and 5 retreatment cycles of CRT.
• Early response observed by Day 7 post UNO treatment.

Conclusions

BA-ONC-01 is currently active and enrolling subjects. Initial results in five subjects with highly relapsed/refractory cutaneous or subcutaneous malignancies demonstrated that a single dose of 25,000 ppm was well tolerated, with immune biomarkers trending in a favorable direction on Day 7 and Day 21. These results compare favorably to previously shown murine data. Additional dose levels, including repeat dosing, are expected to be further evaluated.